
Anthropic Response to Apple Report on Large Reasoning Models
Opus, C. and Lawsen, A. "Comment on The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity." Arxiv / Computer Science (June 10th, 2025).
URL: https://arxiv.org/html/2506.09250v1
ABSTRACT: “Shojaee et al. (2025) report that Large Reasoning Models (LRMs) exhibit "accuracy collapse" on planning puzzles beyond certain complexity thresholds. We demonstrate that their findings primarily reflect experimental design limitations rather than fundamental reasoning failures. Our analysis reveals three critical issues: (1) Tower of Hanoi experiments systematically exceed model output token limits at reported failure points, with models explicitly acknowledging these constraints in their outputs; (2) The authors' automated evaluation framework fails to distinguish between reasoning failures and practical constraints, leading to misclassification of model capabilities; (3) Most concerningly, their River Crossing benchmarks include mathematically impossible instances for N > 5 due to insufficient boat capacity, yet models are scored as failures for not solving these unsolvable problems. When we control for these experimental artifacts, by requesting generating functions instead of exhaustive move lists, preliminary experiments across multiple models indicate high accuracy on Tower of Hanoi instances previously reported as complete failures. These findings highlight the importance of careful experimental design when evaluating AI reasoning capabilities.”
RESPONSES…

Apple Report on Large Reasoning Models and Problem Complexity
Jonas F. Lotz, António Vilarinho Lopes, Stephan Peitz, Hendra Setiawan, Leonardo Emili. “The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity.” Paper. Machine Learning Research, Apple (June 2025).
URL: https://machinelearning.apple.com/research/illusion-of-thinking
ABSTRACT: “Recent generations of frontier language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers. While these models demonstrate improved performance on reasoning benchmarks, their fundamental capabilities, scaling properties, and limitations remain insufficiently understood. Current evaluations primarily focus on established mathematical and coding benchmarks, emphasizing final answer accuracy. However, this evaluation paradigm often suffers from data contamination and does not provide insights into the reasoning traces’ structure and quality. In this work, we systematically investigate these gaps with the help of controllable puzzle environments that allow precise manipulation of compositional complexity while maintaining consistent logical structures. This setup enables the analysis of not only final answers but also the internal reasoning traces, offering insights into how LRMs “think”. Through extensive experimentation across diverse puzzles, we show that frontier LRMs face a complete accuracy collapse beyond certain complexities. Moreover, they exhibit a counterintuitive scaling limit: their reasoning effort increases with problem complexity up to a point, then declines despite having an adequate token budget. By comparing LRMs with their standard LLM counterparts under equivalent inference compute, we identify three performance regimes: (1) lowcomplexity tasks where standard models surprisingly outperform LRMs, (2) medium-complexity tasks where additional thinking in LRMs demonstrates advantage, and (3) high-complexity tasks where both models experience complete collapse. We found that LRMs have limitations in exact computation: they fail to use explicit algorithms and reason inconsistently across puzzles. We also investigate the reasoning traces in more depth, studying the patterns of explored solutions and analyzing the models’ computational behavior, shedding light on their strengths, limitations, and ultimately raising crucial questions about their true reasoning capabilities.”
RESPONSES…